Teaching Computer Science Without a Computer

Session Plan

- Introduction to Unplugged methods (~ 5 minutes)
- Unplugged activities (~ 30 minutes):
- My Robotic Friends
- CSUnplugged: Binary Numbers \& Image Representation

Teaching CS without a Computer

- CS is not just about computers!
- What if you have no access to computer lab?
- What if students don't have the ICT skills to use certain apps / devices?
- Can use unplugged methods

Activities

- We are going to split into groups of 4-5
- Then split into sub-groups (computer scientists and robots)
- The robots will work on CSUnplugged activities
- The computer scientists will work on My Robotic Friends
- Then we'll swap
- But not yet, I will explain My Robotics Friends first

My Robotic Friends

- Created by Thinkersmith for CSEd week
- An example of sequencing and writing algorithms
- Choose a cup tower (or a few) for the robots to build
- The computer scientists will write instructions for robots

My Robotic Friends

But you can only use the following six symbols:

$$
\begin{aligned}
& \uparrow \text { - Pick Up Cup } \\
& \downarrow \text { - Put Down Cup } \\
& \rightarrow \text { - Move } 1 / 2 \text { Cup Width Forward } \\
& \leftarrow-\text { Move } 1 / 2 \text { Cup Width Backward } \\
& \curvearrowright \text { - Turn Cup Right } 90^{\circ} \\
& \text { - Turn Cup Left } 90^{\circ}
\end{aligned}
$$

My Robotic Friends - Example

We may want our robot to build this tower:

My Robotic Friends - Example

Start from the cup stack - each step is $1 / 2$ a cup width

$$
\begin{aligned}
& \uparrow \rightarrow \rightarrow \downarrow \leftarrow \leftarrow \\
& \uparrow \rightarrow \rightarrow \rightarrow \uparrow \downarrow \leftarrow \leftarrow \leftarrow \\
& \uparrow \rightarrow \rightarrow \downarrow
\end{aligned}
$$

My Robotic Friends

- Split into groups of 4-5
- Then split groups into computer scientists / robots
- Computer scientists will write algorithms for 10-15 minutes
- Robots will do the CSUnplugged activities
- Swap over and robots will follow the algorithms and write their own for 10-15 minutes
- Come back together for a wrap-up at the end

Computer Science Unplugged

- CS Unplugged for short
- A collection of free activities
- Large range of concepts relevant to DT curriculum
- Activities targeted at age groups 5-12-but for anyone!
- We will do the Binary Numbers \& Image Representation activities today

CS Unplugged - Binary Numbers

- When a binary number card is not showing - it is represented by a 0
- When is it showing, it is represented by a 1
- This is the binary number system
- The system we normally use is the decimal system
- decimal = 10 digits $=0123456789$
- binary $=2$ digits $=01$

CS Unplugged - Binary Numbers

- What number is 10001 in decimal?
- What would 17 be in binary?
- How about 6, 15, 21?

CS Unplugged - Binary Numbers

- What do you notice about the number of dots on the cards?
- How many dots would the next card have if we carried on to the left?
- What is the biggest number you can make? What is the smallest?

CS Unplugged - Binary Numbers

- Is there more than one way to get any number?
- Is there any number you can't make between the smallest and biggest numbers?
- Now try counting from zero onwards, is there a pattern?

CS Unplugged - Binary Numbers

- What happens when you put a 0 on the right of a binary number?
- Is there a pattern for odd and even numbers?

CS Unplugged - Image Representation

- How could you represent differents fonts or images on a computer?

CS Unplugged - Image Representation

1, 3, 1
4,1
1, 4
$0,1,3,1$
0, 1, 3, 1
1, 4

CS Unplugged - Image Representation

[^0]
CS Unplugged - Image Representation

[^0]: 6, 2, 2, 2
 5, 1, 2, 2, 2, 1
 6, 6
 4, 2, 6, 2
 3, 1, 10, 1
 2, 1, 12, 1
 2, 1, 3, 1, 4, 1, 3, 1
 1, 2, 12, 2
 $0,1,16,1$
 $0,1,6,1,2,1,6,1$
 $0,1,7,2,7,1$
 1, 1, 14, 1
 2, 1, 12, 1
 2, 1, 5, 2, 5, 1
 3, 1, 10, 1
 4, 2, 6, 2
 6,6

