Creating Networks in Edgy Session

Introduction to Edgy

Presented by Daniel Hickmott

Presentation Contents

- What is Edgy?
- Edgy Websites
- Edgy vs Snap!
- Edgy Blocks
- Snap! Cloud Account
- Edgy Examples
- Random, Cyclic & Connected Graphs

What is Edgy?

- A modification for *Snap*!
- Create and manipulate Graphs with code blocks
- Piloted in VCE Algorithmics (this subject includes Graph Theory)
- Also used in an Undergraduate Algorithms course at Monash

Graph Theory) at Monash

Edgy Websites

- <u>Snap Apps: Edgy website</u>
- <u>Github: Edgy website</u>
- <u>Programming with Edgy materials on Alexandria Repository</u>

Edgy vs Snap!

- One *Graph* instead of multiple *Sprites*
- No *Motion* or *Pen* blocks in *Edgy*

gy
Looks
Operators
Network
Edges

Collections

Edgy Blocks

- Networks
- Nodes
- Edges
- External
- Collections

Snap! Cloud Account

- You can register for a *Cloud* Account to save your Snap! projects
- Unfortunately *Edgy* does not allow this
- Can also save projects to:
 - an XML file through File > Export Project
 - the Web Browser through File > Save
- We recommend exporting the XML files and keeping them on a USB and/or emailing them to yourself at the end of the day

Edgy Examples

- On the <u>Snap Apps: Edgy website</u> there are some example programs to download
- Can download these as XML files
- Includes Muddy City MST Activity from Computer Science Unplugged in Edgy
- File > Import...

Random, Cyclic & Connected Graphs

- In this activity, you will create a *program* that:
 - Creates random Graphs for a number of nodes and probability
 - Checks whether Sub-Graphs with coloured edges are connected
 - Checks whether Sub-Graphs with coloured edges are cyclic
- These algorithms will be used in the session for finding MSTs as well
- nd probability s are connected s are cyclic

Random, Cyclic & Connected Graphs

- Is G_R connected and/or cyclic?
- Is G_G connected and/or cyclic?

Summary

- In this presentation I have:
 - Introduced you to *Edgy*
 - Explained some of the main differences between Snap! and Edgy
 - Showed you a few different websites for using and learning *Edgy*
 - Explained the main parts of the Edgy interface
- Any questions?

en Snap! and Edgy and learning Edgy