 Maths

cogs
ro

SORATCTH Maths

scope \& Sequence

Year 5 - Computing focus (20+ hours of teaching materials)

Year 6 - Mathematics focus (20+ hours of teaching materials)

Module 4: Building with Numbers 873

Module 5: Exploring Mathematical Relationships
F\&8: $-8,08,8$

Module 6:
Coordinates and Geometry

$0+0{ }^{-4 *}$

Module 1: Tiling Patterns

Module 1: Tiling Patterns

Investigation 3
Creating Circular Rose Patterns

Investigation 4 Defining Your Own Pattern Blocks

Links to other learning

The theme of Module 1 is repeating patterns. You may like to make links it to areas, such as art or science, where similar patterns can be observed. Some examples are below.

Art: Islamic or Gothic Art

Geometric patterns have been used extensively in Islamic art for many centuries and can also be found in gothic architectural features, such as stained glass windows.

Science: Patterns in Nature
Geometric patterns are seen in nature for example in snowflakes or in the sand sculptures created by puffer fish on the ocean floor.

Links to Math concepts

Symmetry

Exploring symmetry is a 2D Space maths concept, which students can make many connections with in the world around them. This Scratch module explores reflection symmetry and rotational symmetry.

Symmetry in the real world

This module can be used to delve further into the concept of symmetry by showing students, or having them investigate and discover themselves, examples of symmetry in the real world.

sprite: an object we control by our blocks and scripts e.g. a Tile, Scratch Cat.

stage: the area where you can see the sprites.

script: a sequence of blocks
snapped together, a program;
script: a sequence of blocks
snapped together, a program; it can be run by clicking on any part of the script
hat block: is always placed at the top of a script
block: a command which tells the sprite what to do; it can be run by clicking on it.
a command which makes the sprite change its direction
a command which makes the sprite change its position
stamp: a block which tells the sprite to print its image on the stage
debugging: the process of fixing or improving a program or scripts

SCRATCH Maths

Investigation 1
Moving, Turning, and Stamping

Module 1 • Investigation 1 • Activity 1.1.1 Moving, Turning, and Stamping

Learning Intention: Explore how to drag and stamp a sprite to create symmetrical patterns.
Success Criteria:

- Drag, turn, move, and stamp a sprite;
- Build a simple script to create a pattern without using unnecessary blocks.

This investigation introduces three important Scratch commands (move, turn, and stamp) and gradually builds up to using these in a program or script in order to create a simple pattern.

Activity Instructions

(1) Open project 10 -Tile Stamp, remix it, add your name to the title, save the project, and share it to our class studio, Investigation 1.

Remixing a project allows you to create a copy for you to edit, without altering the original project.
(2) Create a symmetrical pattern by dragging the Tile sprite and clicking on the stamp block in the Scripts area.

You can save your pattern by right-clicking (or Shift + click) on the stage and selecting save picture of stage.
(4) Click on the green flag to run the setup script - this resets the stage and the sprite.

SCRACH Maths

 applications for learningThis activity can be used as an open-ended approach to learning about symmetry. Students can share their examples of symmetrical patterns. Ask students how many lines of symmetry each pattern has? Why do they only have 1? How could we create patterns with more lines of symmetry?

Module 1 • Investigation 1 • Activity 1.1.2 Drag, Turn, and Stamp

Learning Intention: Explore how to rotate a sprite both clockwise and anti-clockwise and change its direction to create a symmetrical pattern.

Success Criteria:

- Explain what the setup script does and how to set the direction of a sprite.

Activity Instructions

(1) Open project 11-Tile Turn, save as a copy and add your name to the title, save the project, and share it to our class studio, Investigation 1.
(2) Explore how the Tile sprite reacts to clicking the turn blocks.

Look at the setup script and explain what has changed.
There is a new block in the setup script point in direction 0 which sets the Tile sprite to point upwards (north). This allows the pattern to be stamped from the initial starting position with initial direction after the setup script has been run.

(4) You will see blocks in the script area that will turn your Tile sprite 15° and 45° clockwise and anticlockwise. (5) Experiment with moving, turning, and stamping the Tile sprite. Try changing the angle of the turn and stamping to see how the pattern changes.

SORATCH
Maths applications for learning

Here you can extend students by seeing if they can use the rotate block to create patterns that have more than one line of symmetry or rotational symmetry.

Module 1 • Investigation 1 • Activity 1.1.3 Move, Turn and Stamp

Learning Intention: Explore how to rotate a sprite both clockwise and anti-clockwise and change its direction to create a symmetrical pattern.

Success Criteria:

- Move the sprite without dragging it;
- Snap blocks together to create a script.

Activity Instructions

(1) Open project 12-Tile Move, save as a copy and add your name to the title, save the project, and share it to our class studio, Investigation 1.
(2) Move the Tile along the stage by clicking on the move 80 steps or move 40 steps blocks in the scripts area - the Tile should now be moved only using the blocks, no dragging allowed.
(3) Snap together one of the move blocks, one of the turn blocks and the stamp block and then click to run them as a whole script.

(4) Try the same with the other blocks in the Scripts area.
(5) Save your pattern by right-clicking (or Shift + click) on the stage and selecting save picture of stage.
(6) Try using a different number of steps by changing the number in the move block.
(7) Try turning the Tile sprite a different angle by changing the number in the turn block.

Explore different values of inputs and clicking the move - turn - stamp script several times. Note that some scripts below have different move and the same turn:

My Investigation 1 check list:
\square I created a symmetrical pattern by stamping the Tile sprite .
\square In my patterns, I turned the sprite by using the turn block.
\square In my patterns, I moved the sprite by using the move block.
\square I changed the values in my blocks.
\square I snapped the blocks together and ran my script repeatedly.
\square I saved the picture of my pattern in a file.
\square I can simplify a script to make it easier to read, explain and debug.

SORATCIT Maths

applications for learning

Once students have mastered this investigation, they can get creative and experiment with creating a design, such as an ANZAC or Remembrance Day wreath:

How to: students create a new costume and then code it to repeat.

https://scratch.mit.edu/projects/430883000/

If students are not confident with drawing their own Sprite, they can find an image from Google and upload it as their Sprite, then code to create a wreath design.

Spot the difference

Students can experiment with changing the number of movements their Sprite will take when stamped. Depending on the size and shape of their Sprite, this can create a loosened or tightly coiled wreath design.

REMEMBERANCE

DAY

Snowflake Design

Students can research different snowflake patterns in nature to use as inspiration to create their own design. I have used the snowflake image in the top left as my inspiration for the following Scratch project.

Activity Modifications

You can modify this activity to focus just on angles and symmetry by instructing students to design a branch that they will code to create a snowflake design. I created this design using the line and square tool.

Costume branch

10

Students can experiment with the repeat block and angle block to create a design. They can change the numbers to be factors of 360 and compare the different results.

https://scratch.mit.edu/projects/445441712/

End of Investigation 1

Maths

Module 1: Tiling Patterns

Module 1 • Investigation 2 • Activity 1.2.1

Repeating Flowers

Learning Intention: Use a script to make a circular pattern.
Success Criteria:

- Use the repeat block as an alternative to repeatedly clicking a script to create a circular pattern.

repetition: running a sequence of commands a certain number of times

is a control block which runs the blocks inside a specified number of times
is a command which waits a specified number of seconds, e.9. 1,2 , or 0.2 , then continues with the next blocks
total turn: total number of degrees the sprite turns when running a script
costumes: are alternative ways that a sprite can look on the stage
is the block which, when clicked,
next costume switches the sprite's costume to the next one in the list.
unplugged: activity away from the computer

Activity Instructions

(1) Open project 13-Tile Repeat, remix, add your name to the title, save the project, and share it to our class studio, Investigation 2.
(2) Click on the move-turn-stamp script repeatedly until they create a complete circular pattern i.e. one whole turn.
(3) Discuss the minimum number of clicks we needed to complete the pattern.
(4) Click the green flag to clear the stage.
(5) Find the repeat block in the Control group and put it around the script.
(6) In the repeat block, type the minimum number of clicks that you previously calculated to create the same pattern and run the script.
(7) Duplicate your script by right-clicking (or Shift + click) on it and selecting duplicate.

8 Place this script in the scripts area and change the numbers in the repeat and turn blocks to create different flower patterns.

(9) You can add the wait block to your script to see how the pattern is created.

Learning Intention: Use a script with 2 costumes to make a circular pattern.

Success Criteria:

- Create a circular pattern that alternates between 2 different costumes.

Activity Instructions

(1) Continue in your copy of the 13 -Tile Repeat project.
(2) Clear the stage and choose one of your previous flower scripts to use.
(3) Click on the Costumes tab between the stage and the scripting area. You will find the Tile sprite has two different shapes or 'costumes'.
(4) Click on the second costume - the circle. Go back to the Scripts tab and run their script.
(5) Go to the Costumes tab again and select the first costume - the square. Run your script again.
(6) Drag the next costume block from the Looks blocks to the Scripts area.
(7) Try to create example pattern 1 below, then experiment with other patterns (e.g. 2).

8 As before to save their pattern, students can right-click on the stage (or Shift + click) and select save picture of stage.

Extra Support

The screenshot below shows how to create patterns using multiple costumes.

Extra Support

Below are the scripts for some alternating costume patterns.

Links to other learning

The theme of Module 1 is repeating patterns. You may like to make links it to areas, such as art or science, where similar patterns can be observed. Some examples are below.

Tessellations

Exploring tessellations is an excellent 2D Space maths activity, which also links to art and creativity. This Scratch module is perfect for this!

https://scratch.mit.edu/projects/872507/

https://scratch.mit.edu/projects/2537749/

https://scratch.mit.edu/projects/305345814/

Module 1 • Investigation 2 • Activity 1.2.4 [Extension] Repeating \& Alternating

Learning Intention: Use a script to create a repeating and alternating pattern.

Success Criteria:

- Create a circular pattern that alternates between different costumes and repeats.

Activity Instructions

(1) Continue in your copy of the 13-Tile Repeat project.
(2) Rearrange the blocks inside the repeat block of your flower scripts so that you create patterns similar to those below.
Hint: You might need to remove some of the blocks or use them more than once.
Below are the scripts for some patterns that you might like to try:

To create this design, I duplicated my original poppy Sprite, made the size smaller, and changed the colour.

SCRATOH Maths applications for learning

Students can design multiple Sprites to alternate between. Then they can experiment with their repeat, movement, and turning numbers to create a Christmas wreath design.

Add more detail

Students can learn more about the x and y axis by uploading a Christmas bow as a Sprite, then positioning it at the base of the wreath.

Tip: in backgrounds, you can select the xy grid, which will help your students visualise the x and y axis.

To extend students who are looking for something more complex:

Instruct them to use the ball Sprite and code baubles to appear on the wreath as well.

End of Investigation 2

Maths

Module 1: Tiling Patterns

Module 1 • Investigation 3 • Activity 1.3.1 Moving Forwards and Backwards

```
Learning Intention: Use a script to make a circular pattern using a different algorithm.
Success Criteria:
- Create a circular pattern;
- Explain how I have moved the sprite backwards.
```


Activity Instructions

(1) In the previous investigation, you used the algorithm move-turn-stamp to create patterns. You will now use a different algorithm to create a rose pattern - move-stamp-move back-turn.
(2) How do you think you could program your sprite to move backwards? Physically step through the algorithms.
(3) Open the 14-Rose Patterns project, remix, add your name to the title, save the project, and share it to our class studio, Investigation 3.
(4) Build a script to create the circular rose pattern below using the repeat block. Include a wait block to slowly demonstrate how the pattern is created.

(5) Experiment with changing the number of steps in the move block, the number of degrees in the turn block and the number in the repeat block.
(6) Try changing the numbers in your scripts to create some of the patterns below.

Extra Support

You might like to physically demonstrate for yourself how the rose pattern is stamped - e.g. take 1 step forward, stamp your foot, take 1 step backward, rotate slightly to the right and repeat...

You can use the script below to create the rose pattern on the right. Use the script that includes the wait blocks to slowly demonstrate how the pattern is stamped.

Extra Support

The scripts below create rose patterns without and with a stamp in the centre.

Extra Support

You can use the script below to create the first rose pattern on the left.

Module 1 • Investigation 3 • Activity 1.3.3
 Combining Different Costumes

Learning Intention: Use a script to make a rose pattern.
Success Criteria:

- Create a rose pattern;
- Switch between specific costumes.

Асtivity Instructions

(1) Continue in your copy of the 14-Rose Patterns project.
(2) Go to the Costumes tab and explore how many costumes the Tile sprite has. Look at each of the different costumes and notice each costume has its own name.
(3) Find the switch costume to ... block and click on its drop down menu: this has the same list of costume names.
(1) Use this
block in your scripts to create your own

- Code		umes	41) Sounds
	\wedge	Costurne	square
square 48×48			
3 small squar... 26×25			

small square dark
small square yellow
circle
hexagon
small circle yellow

Links to other learning

Art: The Mandala

Using the idea of a circular repeated pattern makes the mandala an obvious choice for exploration. Check out these examples on Scratch - or make your own!

https://scratch.mit.edu/projects/349957316/

Explain why Script A would or would not create the pattern above.

Explain why Script B would or would not create the pattern above.

C

 above.Explain why Script C would or would not create the pattern

