
CREATIVE COMPUTING
Harvard Graduate School of Education

55

CHARACTERS
CONVERSATIONS
SCENES
DEBUG IT!
CREATURE CONSTRUCTION
PASS IT ON

0 1 2 4 5 63

UNIT 3
STORIES

WHAT’S INCLUDEDYOU ARE HERE

LEARNING OBJECTIVES
Students will:
+ gain familiarity in and build understandings of the benefits

of reusing and remixing while designing
+ develop greater fluency with computational concepts

(events and parallelism) and practices (experimenting and
iterating, testing and debugging, reusing and remixing)

+ explore computational creation within the genre of stories
by designing collaborative narratives

+ Reusing and remixing support the development of critical
code-reading capacities and provoke important questions
about ownership and authorship. Consider different
strategies for how you might facilitate, discuss, and assess
cooperative and collaborative work.

NOTES

+ reusing and remixing
+ make a block
+ backpack
+ stage

KEY WORDS, CONCEPTS, & PRACTICES

THE “BIG IDEA”

UNIT 3
OVERVIEW

In the introduction to his doctoral dissertation
exploring remix culture, Andres Monroy-Hernandez
(the lead designer of the initial version of the
Scratch online community) included three quotes:

Building on other people’s work has been a
longstanding practice in programming, and has only
been amplified by network technologies that
provide access to a wide range of other people’s
work. An important goal of creative computing is to
support connections between learners through
reusing and remixing. The Scratch authoring
environment and online community can support
young designers in this key computational practice
by helping them find ideas and code to build upon,
enabling them to create more complex projects
than they could have created on their own.

The activities in this unit offer initial ideas and
strategies for cultivating a culture that supports
reusing and remixing. How can you further support
sharing and connecting?

THE “BIG IDEA”

We are like dwarfs standing upon
the shoulders of giants, and so

able to see more and see farther
than the ancients. – Bernard of Chartres, circa 1130

A dwarf on a giant’s shoulders sees farther of the two.– George Herbert, 1651

If I have seen further it is by standing on the shoulders of giants. – Isaac Newton, 1676

+ pass-it-on story
+ pair programming
+ scratch screening
+ design demo

This unit focuses on helping students develop their
storytelling and remixing abilities through a variety of
hands-on and off-computer design activities, providing
opportunities for students to work collaboratively and
build on the creative work of others. Building on initial
experiences from Unit 2, the activities in this unit are
designed to help students develop deeper fluency in the
computational concepts of events and parallelism and the
computational practices of experimenting and iterating
and reusing and remixing. Each capacity-building activity is
designed to help students build up storytelling projects by
discovering new blocks and methods for programming
interactions between sprites and backdrops, culminating in
a Pass It On project.

Create your own
Scratch blocks
using Make a

Block.

CHARACTERS

How do you coordinate
interactions between

sprites using timing and
broadcasting?

CONVERSATIONS

What's the difference
between the Stage

and sprites?

SCENES

What can we
create by building
on others’ work?

CREATURE
CONSTRUCTION

DEBUG IT!

Help!
Can you debug these

five Scratch
programs?

What can we
create by building
on others’ work?

PASS IT ON

SESSION 2 SESSION 3 SESSION 4SESSION 1 SESSION 5

CHOOSE YOUR OWN ADVENTURE

POSSIBLE PATH

OBJECTIVES
By completing this activity, students will:
+ investigate the problem and find a solution to five

debugging challenges
+ explore a range of concepts (including events and

parallelism) through the practices of testing and
debugging

DEBUG IT!

❑ Unit 3 Debug It! handout
❑ Unit 3 Debug It! studio

http://scratch.mit.edu/studios/475554

RESOURCES

❑ Optionally, have the Unit 3 Debug It! handout
available to guide students during the activity.

❑ Help students open the Debug It! programs from the
Unit 3 Debug It! studio or by following the project
links listed on the Unit 3 Debug It! handout. Encourage
students to click on the “Look Inside” button to
investigate the buggy program, tinker with problematic
code, and test possible solutions.

❑ Give students time to test and debug each Debug It!
challenge. Optionally, have students use the remix
function in Scratch to fix the bugs and save corrected
programs.

❑ Ask students to reflect back on their testing and
debugging experiences by responding to the reflection
prompts in their design journals or in a group
discussion.

❑ Create a class list of debugging strategies by collecting
students’ problem finding and problem solving
approaches.

ACTIVITY DESCRIPTION

+ What was the problem?
+ How did you identify the problem?
+ How did you fix the problem?
+ Did others have alternative approaches to fixing the

problem?

REFLECTION PROMPTS

+ Were students able to solve all five bugs? If not, how
might you clarify the concepts expressed in the
unsolved programs?

+ What different testing and debugging strategies did
students employ?

REVIEWING STUDENT WORK

NOTES NOTES TO SELF

+ Being able to read others’ code is a valuable skill and
is critical for being able to engage in the practices of
reusing and remixing.

+ This activity is a great opportunity for pair
programming. Divide students into pairs to work on the
debugging challenges.

+ Students can explain their code revisions by
right-clicking on Scratch blocks to insert code
comments.

SUGGESTED TIME

15–30 MINUTES

 U
N

IT3

A
C

TIV
ITY

❑ _______________________

❑ _______________________

❑ _______________________

❑ _______________________

 UNIT 3 ACTIVITY

http://scratch.mit.edu/studios/475554

HELP! CAN YOU DEBUG THESE FIVE SCRATCH
PROGRAMS?

In this activity, you will investigate what is going
awry and find a solution for each of the five
Debug It! challenges.

❑ Make a list of possible bugs in the program.
❑ Keep track of your work! This can be a useful reminder

of what you have already tried and point you toward
what to try next.

❑ Share and compare your problem finding and problem
solving approaches with a neighbor until you find
something that works for you!

+ Add code commentary by right clicking on blocks in your
scripts. This can help others understand different parts
of your program!

+ Discuss your testing and debugging practices with a
partner, and make note of the similarities and
differences in your strategies.

+ Help a neighbor!

❑ DEBUG IT! 3.1 http://scratch.mit.edu/projects/24269007

In this project, the Scratch Cat teaches Gobo to meow. But when it's
Gobo's turn to try -- Gobo stays silent. How do we fix the program?

❑ DEBUG IT! 3.2 http://scratch.mit.edu/projects/24269046

In this project, the Scratch Cat is supposed to count from 1 to the
number the user provides. But the Scratch Cat always counts to 10.
How do we fix the program?

❑ DEBUG IT! 3.3 http://scratch.mit.edu/projects/24269070

In this project, the Scratch Cat is doing roll call with Gobo's friends:
Giga, Nano, Pico, and Tera. But everything is happening all at once!
How do we fix the program?

❑ DEBUG IT! 3.4 http://scratch.mit.edu/projects/24269097

In this project, the Scratch Cat and Gobo are practicing their
jumping routine. When Scratch Cat says "Jump!", Gobo should jump
up and down. But Gobo isn't jumping. How do we fix the program?

❑ DEBUG IT! 3.5 http://scratch.mit.edu/projects/24269131

In this project, the scene changes when you press the right arrow
key. The star of the project -- a dinosaur -- should be hidden in
every scene except when the scene transitions to the auditorium
backdrop. In the auditorium, the dinosaur should appear and do a
dance. But the dinosaur is always present and is not dancing at the
right time. How do we fix the program?

❑ Go to the Unit 3 Debug It! Studio:

http://scratch.mit.edu/studios/475554

❑ Test and debug each of the five debugging

challenges in the studio.

❑ Write down your solution or remix the buggy

program with your solution.

START HERE

DEBUG IT!

FINISHED?

FEELING

STUCK?
THAT’S OKAY! TRY THESE THINGS…

http://scratch.mit.edu/projects/24269007
http://scratch.mit.edu/projects/24269046
http://scratch.mit.edu/projects/24269070
http://scratch.mit.edu/projects/24269097
http://scratch.mit.edu/projects/24269131
http://scratch.mit.edu/studios/475554

❑ In this activity, students will draw a “creature” in three
parts.

❑ Give each student a tri-folded sheet of blank paper and
one minute to draw a “head” for their creature. Next,
have them fold the paper over so that the head is
hidden, with little prompts for where to continue the
drawing. After the head is hidden, students will pass
the creature to another student. Then, give students
one minute to draw a “middle” for their creature, using
the guides from the head, but without peeking! After
the middles are hidden (and prompts drawn), pass the
creatures. Finally, give students one minute to draw a
“bottom” for their creature. When finished, unfold the
papers to reveal the collaboratively constructed
creatures!

❑ Post drawings on a wall or board and let students
explore the outcome of their creative contributions.

❑ Facilitate a group discussion about co-authorship,
collaboration, and reusing and remixing work.

ACTIVITY DESCRIPTION

OBJECTIVES
By completing this activity, students will:
+ be introduced to the computational practice of

reusing and remixing by contributing to a
collaborative drawing

CREATURE
CONSTRUCTION

❑ blank paper (approximately 8.5” by 11”), folded into
thirds

❑ things to sketch with (pencils, pens, markers, etc.)

RESOURCES

+ What is your definition of remixing?
+ Think about the creature you started (drew the

“head” for). How did your ideas become extended or
enhanced by others’ contributions?

+ Considering the creatures you extended (drew the
“middle” or “bottom” sections for), how did your
contributions extend or enhance others’ ideas?

REFLECTION PROMPTS

+ Can students explain remixing and its benefits?

REVIEWING STUDENT WORK

NOTES NOTES TO SELF

+ This activity is a perfect warm-up activity for the Pass
It On project! We recommend facilitating Creature
Construction directly before Pass It On.

+ Optionally, have students sign their names at the
bottom of each creature drawing they worked on to
identify the contributing artists.

SUGGESTED TIME

15–30 MINUTES

❑ _______________________

❑ _______________________

❑ _______________________

❑ _______________________

 UNIT 3 ACTIVITY

PASS IT ON OBJECTIVES
By completing this activity, students will:
+ be able to create a Scratch project that tells a

story by reusing and remixing the work of others
+ experience pair programming by working in pairs

to develop a collaborative storytelling project

❑ Pass It On handout
❑ Pass It On studio

http://scratch.mit.edu/studios/475543
❑ Projector and screen to present student work (optional)

RESOURCES

+ How did it feel to remix and build on others’ work? How
did it feel to be remixed?

+ Where else in your life have you seen or experienced
reusing and remixing? Share two examples.

+ How was working with someone else different from your
prior experiences of designing your Scratch projects?

REFLECTION PROMPTS

+ What parts of projects did students contribute to?
+ Do students seem comfortable with the concepts of

events and parallelism and practices of reusing and
remixing?
If not, in what ways can these be further clarified?

REVIEWING STUDENT WORK

NOTES NOTES TO SELF

+ Consider organizing your Scratch screening as an
event! Invite students from other classes to the
viewing, offer snacks and drinks, or host the event in
an auditorium or room with a large wall or screen for
displaying projects.

+ Introduce students to the backpack (located at the
bottom of the Scratch project editor) as another way to
remix projects. Learn more about this tool in the
Backpack video tutorial: http://bit.ly/scratchbackpack

SUGGESTED TIME

45–60 MINUTES

❑ Divide the group into pairs. Introduce students to the
concept of a pass-it-on-story, a Scratch project that is
started by a pair of people, and then passed on to two
other pairs to extend and reimagine. Optionally, print
out the Pass It On handout.

❑ Encourage students to start in whatever way they want
– focusing on characters, scene, plot, or whatever
element excites them. Give each pair 10 minutes to
work on their collaborative story before having them
rotate to extend another story by remixing the project.
Encourage students to give credit for reusing or
remixing content.

❑ After two rotations, allow students to revisit story
projects with their contributions. We suggest hosting a
Scratch screening: with projector and screen, present
the story projects with students gathered around to
watch. Optionally, invite students to add their projects
to the Pass It On studio or a class studio.

❑ Ask students to respond to the reflection prompts in
their design journals or in a group discussion.

ACTIVITY DESCRIPTION

❑ _______________________

❑ _______________________

❑ _______________________

❑ _______________________

 UNIT 3 ACTIVITY

http://scratch.mit.edu/studios/475543
http://bit.ly/scratchbackpack

FINISHED?BLOCKS TO PLAY WITH FINISHED?

+ Add your project to the Pass It
On studio:
http://scratch.mit.edu/studios/4
75543

+ Help a neighbor!
+ Return to all the projects you

contributed to and check out
how the stories evolved!

WHAT CAN WE CREATE BY BUILDING
ON OTHERS’ WORK?

In this project, you will start developing
an animated story project, and then you
will pass the story on to others to remix,
extend, or reimagine!

START HERE

❑ Work on a story project that focuses on
characters, scene, plot, or whatever element
excites you.

❑ After 10 minutes, save and share your project
online.

❑ Rotate & extend another story project by
remixing it.

❑ Repeat!

❑ Brainstorm different possibilities for
remixing, extending, or reimagining a story.
Do you want to add a new scene to the end?
Could you imagine what happens before the
story begins? What if a new character was
added? How about inserting a plot twist?
What else?

THINGS TO TRY

❑ Adding comments in your code can help others understand
different parts of your program. To attach a comment to a script,
right click on a block and add a description.

PASS IT ON

http://scratch.mit.edu/studios/475543
http://scratch.mit.edu/studios/475543

