
CREATIVE COMPUTING
Harvard Graduate School of Education

Personalization is an important guiding principle in the design of the creative computing experience. By “personalization”, we
mean both connecting to personal interests and acknowledging that personal interests can vary considerably. There are many
ways of knowing and doing – and exploring these multiple ways can help support interest, motivation, and persistence among
young learners. In this unit, learners explore some of the advanced concepts and challenging problems associated with game
design. An advanced concept or challenging problem can be made more accessible if rooted in activities that are personally
meaningful. As an example of the power of context, we turn to a story shared by Mitch Resnick – the director of the Scratch
project at MIT.

THE “BIG IDEA”

UNIT 4
OVERVIEW

A few years ago I was at one of our Computer Clubhouse after
school centers and I saw a 13-year-old boy working on creating his
own game. He was able to control a character, in this case, a fish. He
wanted the game to keep track of the score, so you could see how
many little fish had been eaten by the big fish, but he didn’t know
how.

I saw this as an opportunity to introduce the idea of variables. I
showed this to him and he immediately saw how he could use this
block to keep track of how many fish had been eaten in his game. He
took the block and put it in the script right where the big fish eats
the little fish. He quickly tried it. Sure enough, every time the big
fish ate a little fish, the score goes up by 1.

I think that he really got a deep understanding of variables because
he really wanted to make use of it. That's one of our overall goals of
Scratch. It's not just about variables, but for all types of concepts. We
see that kids get a much deeper understanding of the concepts they
learn when they are making use of the concepts in a meaningful
and motivating way.

+ Many new concepts are explored in this unit, so we’ve
included added support in the form of example project
studios, new programming puzzles for extra practice, and
starter game projects that we encourage you to remix
and reuse as needed.

NOTES

+ abstracting and modularizing
+ conditionals
+ operators
+ data
+ variables and lists

KEY WORDS, CONCEPTS, & PRACTICES

LEARNING OBJECTIVES
Students will:
+ be introduced to the computational concepts of

conditionals, operators, and data (variables and lists)
+ become more familiar with the computational practices of

experimenting and iterating, testing and debugging, reusing
and remixing, and abstracting and modularizing by building
and extending a self-directed maze, pong, or scrolling game
project

+ identify and understand common game mechanics

THE “BIG IDEA”

+ sensing
+ feedback fair
+ arcade day
+ puzzle jar
+ brain dump

SESSIONS 1 - 5

How can you use
Scratch to build an
interactive game?

STARTER
GAMES

SESSION 5

Help!
Can you debug

these five Scratch
programs?

DEBUG IT!

SESSION 1 SESSION 4

What do all games
have in common?

DREAM GAME
LIST

How can you add
score to a game
using variables?

SCORE

Tackle nine Scratch
programming

puzzles.

INTERACTIONSEXTENSIONS

What are different
ways of extending

and increasing
difficulty in a game?

SESSION 2 SESSION 3

In this unit, learners will become game designers and
experience creating their own game project. Guided by the
activities in this unit, students will be introduced to game
mechanics and game development while building
understandings of computational concepts (conditionals,
operators, data) and computational practices (abstracting
and modularizing).

You could get students started on their game projects with
the Starter Games activity and then support further
development through other activities. From learning
common game mechanics such as keeping score and
side-scrolling, to the creation of multiplayer games
(e.g., Pong), Unit 4 activities offer students multiple
opportunities to practice game development.

CHOOSE YOUR OWN ADVENTURE

POSSIBLE PATH

OBJECTIVES
By completing this activity, students will:
+ investigate the problem and find a solution to five

debugging challenges
+ explore a range of concepts (conditionals,

operators, and data) through the practices of
testing and debugging

DEBUG IT!

❑ Unit 4 Debug It! handout
❑ Unit 4 Debug It! studio

 http://scratch.mit.edu/studios/475634

RESOURCES

❑ Optionally, have the Unit 4 Debug It! handout
available to guide students during the activity.

❑ Help students open the Debug It! programs from the
Unit 4 Debug It! studio or by following the project
links listed on the Unit 4 Debug It! handout. Encourage
students to click on the “Look Inside” button to
investigate the buggy program, tinker with problematic
code, and test possible solutions.

❑ Give students time to test and debug each Debug It!
challenge. Optionally, have students use the remix
function in Scratch to fix the bugs and save corrected
programs.

❑ Ask students to reflect back on their testing and
debugging experiences by responding to the reflection
prompts in their design journals or in a group
discussion.

❑ Create a class list of debugging strategies by collecting
students’ problem finding and problem solving
approaches.

ACTIVITY DESCRIPTION

+ What was the problem?
+ How did you identify the problem?
+ How did you fix the problem?
+ Did others have alternative approaches to fixing the

problem?

REFLECTION PROMPTS

+ Were students able to solve all five bugs? If not, how
might you clarify the concepts expressed in the
unsolved programs?

+ What different testing and debugging strategies did
students employ?

REVIEWING STUDENT WORK

NOTES NOTES TO SELF

+ This activity provides an opportunity to check in with
students who might need some additional attention or
support, particularly around the concepts of
conditionals (e.g., if), operators (e.g., arithmetic,
logical), and data (e.g., variables, lists).

SUGGESTED TIME

15–30 MINUTES

 UNIT 4 ACTIVITY

❑ _______________________

❑ _______________________

❑ _______________________

❑ _______________________

http://scratch.mit.edu/studios/475634

HELP! CAN YOU DEBUG THESE FIVE SCRATCH
PROGRAMS?

In this activity, you will investigate what is going
awry and find a solution for each of the five
Debug It! challenges.

❑ Make a list of possible bugs in the program.
❑ Keep track of your work! This can be a useful reminder of

what you have already tried and point you toward what to
try next.

❑ Share and compare your problem finding and problem
solving approaches with a neighbor until you find
something that works for you!

+ Add code commentary by right clicking on blocks in your
scripts. This can help others understand different parts of
your program!

+ Discuss your testing and debugging practices with a partner.
Make note of the similarities and differences in your
strategies.

+ Help a neighbor!

❑ DEBUG IT! 4.1 http://scratch.mit.edu/projects/24271192

In this project, the "Inventory" list should be updated every time
Scratch Cat picks up a new item. But Scratch Cat can only pick up
the laptop. How do we fix the program?

❑ DEBUG IT! 4.2 http://scratch.mit.edu/projects/24271303

In this project, Scratch Cat gets 10 points for collecting Yellow
Gobos and loses 10 points for colliding with Pink Gobos. But
something isn't working. How do we fix the program?

❑ DEBUG IT! 4.3 http://scratch.mit.edu/projects/24271446

In this project, Scratch Cat is thinking of a number between 1 and
10. But something is wrong with the guess checking -- it doesn't
work consistently. How do we fix the program?

❑ DEBUG IT! 4.4 http://scratch.mit.edu/projects/24271475

In this project, the "# of hits" display should increase by 1 every
time the Scratch Cat is hit by a tennis ball. But the "# of hits"
increases by more than 1 when Scratch Cat is hit. How do we fix
the program?

❑ DEBUG IT! 4.5 http://scratch.mit.edu/projects/24271560

In this project, Scratch Cat is navigating a maze to get to the
yellow rectangle. But Scratch Cat can walk through walls. How do
we fix the program?

❑ Go to the Unit 4 Debug It! Studio:

http://scratch.mit.edu/studios/475634/

❑ Test and debug each of the five debugging

challenges in the studio.

❑ Write down your solution or remix the buggy

program with your solution.

START HERE

DEBUG IT!

FINISHED?

FEELING

STUCK?
THAT’S OKAY! TRY THESE THINGS…

http://scratch.mit.edu/projects/24271192
http://scratch.mit.edu/projects/24271303
http://scratch.mit.edu/projects/24271446
http://scratch.mit.edu/projects/24271475
http://scratch.mit.edu/projects/24271560
http://scratch.mit.edu/studios/475634/

❑ On their own or in small groups of 2-3 people,
challenge students to further explore Scratch by
creating Scratch programs that solve each of the nine
Interactions programming puzzles. These Interactions
puzzles explore Sensing blocks, engaging some of the
more advanced concepts in Scratch related to
interactivity. Optionally, have the Interactions handout
available to guide students during the activity.

❑ Each puzzle can have several possible solutions. Invite
students or groups to share different solutions and
strategies. We suggest the Pair-Share or Design Demo
activity to allow students to share their work and
describe their process. Optionally, have students add
their projects to the Interactions studio or a class
studio.

❑ Ask students to think back on the challenge by
responding to the reflection prompts in their design
journals or in a group discussion.

ACTIVITY DESCRIPTION

OBJECTIVES
By completing this activity, students will:
+ explore different approaches to making projects

interactive by solving a series of nine
programming puzzles

+ gain more fluency in the concepts of conditionals,
operators, and data, and the practice of testing and
debugging

INTERACTIONS

❑ Interactions handout
❑ Interactions studio

http://scratch.mit.edu/studios/487213

RESOURCES

+ Which puzzles did you work on?
+ What was your strategy for solving the puzzles?
+ Which puzzles helped you think about your game

project?

REFLECTION PROMPTS

+ Are the puzzles solved?
+ Did students explore other approaches for solving

the puzzles?
+ Are there certain blocks or concepts students are

still struggling with? How might you help?

REVIEWING STUDENT WORK

NOTES NOTES TO SELF

+ Choose particular challenges that highlight new blocks
or concepts that you would like students to explore. Or
let students invent their own interaction puzzle
prompts.

+ Repurpose these puzzles as an unstructured activity for
students who finish other activities early or as a
warm-up challenge. Create a puzzle jar: print out, cut,
fold, and place copies of each puzzle description in a
jar. Then, let students pick puzzles from the jar to
solve.

❑ _______________________

❑ _______________________

❑ _______________________

❑ _______________________

 UNIT 4 ACTIVITY

http://scratch.mit.edu/studios/487213

❑ Before getting started in Scratch, write down ideas in
your design journal for possible ways of programming
each of the interactivity puzzles.

❑ Work with a neighbor. Collaborating with a partner can
be a great way to solve problems and gain new
perspectives on ways of programming in Scratch!

+ Add each of the projects you create to the Interaction
Studio: http://scratch.mit.edu/studios/487213

+ Help a neighbor!
+ Discuss your strategies for approaching each puzzle with

a partner. Take notes about the similarities and
differences in your methods.

❑ PUZZLE 1: Whenever you press the B key, the sprite gets a little
bigger. Whenever you press the S key, the sprite gets a little smaller.

❑ PUZZLE 2: Whenever the sprite hears a loud sound, it changes color.

❑ PUZZLE 3: Whenever the sprite is in the top 25% of the screen, it
says "I like it up here."

❑ PUZZLE 4: When the sprite touches something blue, it plays a high
note. When it touches something red, it plays a low note.

❑ PUZZLE 5: Whenever two sprites collide, one of them says: "Excuse
me.”

❑ PUZZLE 6: Whenever the cat sprite gets near the dog sprite, the dog
turns and runs from the cat.

❑ PUZZLE 7: Whenever you click on the background, a flower appears
at that spot.

❑ PUZZLE 8: Whenever you click on a sprite, all other sprites do a
dance.

❑ PUZZLE 9: Whenever you move the mouse-pointer, the sprite follows
but doesn't touch the mouse-pointer.

FINISHED?

FEELING

STUCK?
THAT’S OKAY! TRY THESE THINGS…

WHAT DIFFERENTIATES A SCRATCH
PROJECT FROM A STILL IMAGE OR A VIDEO?

Tackle these nine puzzles that engage some of
the more advanced concepts in Scratch related to
interactivity. Each of these challenges has several
possible solutions.

❑ Create a Scratch program for each of the nine

interactivity puzzles.

START HERE

INTERACTIONS

http://scratch.mit.edu/studios/487213
Ben

